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Abstract. We study the excitation of metal clusters irradiated by intense laser beams, within the framework
of a time dependent density functional approach at fully quantal or semiclassical levels. We focus on
ionization processes and energy deposition. It is shown that intense lasers are as efficient as energetic ions
to create highly charged clusters, and with comparable deposited excitation energy. We also discuss coupling
of electronic to ionic degrees of freedom. We finally consider the importance of accounting for dynamical
two-body correlations in the semiclassical approximation and discuss second harmonic generation.

PACS. 36.40.Cg Electronic and magnetic properties of clusters – 36.40.Wa Charged clusters –
42.50.Hz Strong-field excitation of optical transitions in quantum systems; multi-photon processes;
dynamic Stark shift

1 Introduction

The experimental and theoretical investigation of the dy-
namical properties of simple metallic clusters has been an
active field of research for several years now [1,2]. Besides
numerous studies devoted to electronic collective modes in
the regime of small oscillations [3], which are adequately
described within linear response theory [4], there is grow-
ing interest in the dynamical behaviour of metal clusters,
when strongly excited by collision with an energetic ion or
irradiated by an intense laser. This extends current studies
of quantum systems under very strong excitations, such as
multiphoton processes in atoms [5,6] and small molecules
[7] in strong laser pulses (peak intensity I about 1013 to
1016 W/cm2, which corresponds to electric field ampli-
tudes of order E0 ∼ 0.5−15V/a0), for a recent review see
[8]. These strong laser pulses typically have pulse lengths
in the range of less than 100 femtoseconds up to several
picoseconds, with frequencies ω0 extending from the in-
frared to the ultraviolet. With such powerful experimental
tools at hand, a wealth of new and sometimes surprising
phenomena becomes accessible.

Up to now, most experiments using laser pulses to in-
vestigate simple metal clusters have been carried out at
relatively moderate laser intensities. There is, however,
growing interest in the behaviour of highly charged clus-
ters, which may undergo fragmentation or fission processes
[9]. These high charge states may be reached by collisions

a Institut Universitaire de France
e-mail: suraud@irsamc2.ups.tlse.fr

with highly charged ions [10] or using laser beams. The
former method, although efficient, requires a proper (high
level) ion source at hand, while lasers are nowadays widely
spread experimental devices. Yet, even if used to prepare
clusters in high charge states (as in the work of Näher
et al. [11]), the laser intensities are still often in a regime
where ionization proceeds stepwise via single-photon pro-
cesses. Since the pulse lengths used for example in [11]
are of the order of nanoseconds, the ionization processes
are accompanied by an additional warming of the clusters
which may lead to the loss of small fragments already dur-
ing the charging process. Very recently, however, new ex-
periments with strong femtosecond pulses have been per-
formed which seem to indicate significant differences as
compared to the behaviour in the long-pulse regime [12].
More experimental activity of that kind may be expected
for the future, and it is thus worthwhile to start theoreti-
cal investigations of clusters under the influence of strong
laser pulses. Linear response theory ceases to be applicable
to such situations, and one needs to recur to a nonlinear
approach such as provided within the framework of time-
dependent density functional theory (TDDFT) [13,14].

When irradiated by an intense laser, the cluster expe-
riences a short (1 fs to 10–100 fs) and violent electromag-
netic pulse. The cluster response is thus primarily (and,
first, exclusively) governed by the electron response, which
dominates the fs dynamics. The cluster usually loses a
sizable fraction of its valence electrons, and undergoes a
dipole oscillation (Mie plasmon). The cluster deexcitation
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then proceeds by the coupling of electronic to ionic degrees
of freedom. Finally, the highly charged cluster fragments,
on a time scale of the order of picoseconds. The excitation
process evolves, to a totally unknown (and basically not
yet investigated) extent, in a non adiabatic way, which
makes it hard to justify the Born-Oppenheimer approxi-
mation. A proper account for the degree of adiabaticity
of the deexcitation phase thus constitutes an important
issue. This, however, requires systematic studies, which
remain on the edge of today’s computational possibilities,
although some qualitative insights are already at hand (see
below).

In this paper we focus on ionization and energy de-
position in clusters irradiated by short and intense laser
pulses (intensity I of order 1010 to 1014 W/cm2). We show
how these quantities can be accessed by means of the
TDDFT at various levels of sophistication (fully quantal,
semi-classical, possibly complemented by a collision term),
possibly including an explicit, non adiabatic, coupling to
ionic degrees of freedom. The paper is organized as follows.
Section 2 presents the formalism, both in terms of theo-
retical tools and methods. In Section 3 we give selected
results on ionization and energy deposition and transfers.
We finally give some conclusions in Section 4.

2 Formalism

2.1 Electron dynamics

Our description of the valence electron cloud is based on
TDDFT [13,14], which has accompanied cluster physics
since its early stages [4] and which we have used success-
fully beyond the linear regime in several previous appli-
cations [15–20]. TDDFT may be used at various levels of
sophistication, both in terms of the approximation used
to describe the exchange-correlation contribution, and in
terms of the nature of the description (fully quantal, semi-
classical) of the electrons. In this section we recall a few
basic formulae necessary for the forthcoming discussions.

2.1.1 The TDKS scheme of DFT

Within TDDFT, the time-dependent density of an n-
electron system can be obtained, through a set of single-
electron wavefunctions φj(r, t) which satisfy the time-de-
pendent Kohn-Sham (TDKS) equation (in atomic units)

i
∂

∂t
φj(r, t) =

(
−
∇2

2
+ v[ρ](r, t)

)
φj(r, t). (1)

The TDKS effective potential v is decomposed into the ex-
ternal potential vext(r, t), a time-dependent Hartree part
and a so-called exchange-correlation (xc) potential vxc [ρ]
(r, t):

v(r, t) = vext(r, t) +

∫
d3r′

ρ(r′, t)

|r− r′|
+ vxc[ρ](r, t), (2)

where the electronic density is given by

ρ(r, t) =
n∑
j=1

|φj(r, t)|
2. (3)

The xc potential is a functional of the density and has to
be approximated in practice. The simplest choice, which
is used in this work, consists in the TDLDA, defined as
vTDLDAxc (r, t) = δELDAxc /δρ

∣∣
ρ=ρ(r,t)

, where ELDAxc =
∫
d3r

ehomxc (ρ(r)) is the static LDA xc energy and ehomxc (ρ) is
the xc energy density of the homogeneous electron gas.
For ehomxc we use the parametrization of Gunnarsson and
Lundqvist [21].

By construction, the TDLDA can be expected to be
good only if the time dependence is sufficiently weak. In
practice, however, it gives good results even in the case of
the rather rapid time dependence of the plasmon response
of metal clusters [1,2,4]. We finally mention that it is pos-
sible to go beyond the TDLDA in describing dynamical
xc effects, for example by including a self-interaction cor-
rection (TDSIC) [22]. To our knowledge, the calculations
reported in [22] represent to date the most sophisticated
attempts to ascertain the relevance of simple TDLDA in
the case of metal clusters subject to intense excitations.
The results show that differences between TDLDA and
TDSIC are minor, with respect to the persistence of gross
characteristics of the electronic response, such as ioniza-
tion patterns and dipole oscillations. The TDLDA method
hence represents a realistic first step towards more sophis-
ticated TDDFT methods, and thus clearly suffices for our
present exploratory purposes.

2.1.2 Quantal versus semi-classical descriptions

The TDKS scheme (Sect. 2.1.1) can also be formulated in
terms of the one-body density operator ρ̂:

˙̂ρ =
1

i~
[ĥ(ρ̂), ρ̂], (4)

where ĥ denotes the single-particle KS Hamiltonian. Be-
sides the quantal approach (4), semi-classical methods can
also be worked out. They have actually been used with
success in metal cluster dynamics for treating collisions
between highly charged ions and metal clusters [18,23].
The Vlasov equation emerges as the semiclassical limit of
equation (4). Following the usual rule of thumb, it may be
obtained by letting the density operator ρ̂ become a phase
space density f(r,p, t) and by accordingly replacing the
commutator in equation (4) by a classical Poisson bracket.
This then leads to the Vlasov equation

∂f(r,p, t)

∂t
+ {f, h} = 0, (5)

where h is now the classical mean field Hamiltonian de-
pending on the electron density %(r, t), which is computed
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as the integral of the phase space distribution over mo-
mentum space:

%(r, t) =

∫
d3p f(r,p, t) (6)

which represents the semi-classical analogon of equa-
tion (3). The semiclassical approximation step leading
from equation (4) to equation (5) has nevertheless to be
performed with due caution. A discussion of the related
expansion in ~ and the corresponding difficulties can be
found in references [24,25].

2.1.3 Beyond mean-field

The BUU equation for clusters

The Vlasov equation represents the basic level of the hi-
erarchy of many-body dynamical equations and is justi-
fied in dynamical situations where dissipative effects are
not too large. Dynamical two-body correlations come at
the next level and allow one to access more dissipative
regimes. These correlations run usually at a faster time
scale than the mean field motion, and one can thus approx-
imate them by instantaneous two-body collisions. This
yields the Vlasov-Boltzmann equation for classical sys-
tems. For dense fermion systems, the appropriate statis-
tics has to be built in. This then leads to the so-called
Boltzmann-Uehling-Uhlenbeck (BUU) equation which has
found widespread application in nuclear physics [26–28].
The resulting BUU equation reads

∂f

∂t
+ {f, h} = IBUU (f(r,p, t)) (7)

with

IBUU =

∫
dp2dp3dp4W (12, 34)(f in12f

out
34 − f

out
12 f in34 ),

(8)

where W (12, 34) is the collision rate

W (12, 34) =
dσ

dω
δ(p1 + p2 − p3 − p4)

×δ

(
p2

1

2m
+

p2
2

2m
−

p2
3

2m
−

p2
4

2m

)
(9)

expressed as a function of the elementary cross-section
dσ/dω. In equation (8), the “in” and “out” label the distri-
bution of particles entering or exiting a two body collision
(12 ↔ 34), such that f inij = fifj , f

out
kl = (1− fk)(1− fl),

with the short notation fi = f(ri,pi, t). This formula-
tion of the outgoing phase space blocking foutkl assumes
that the phase space distribution is normalized as n =∫
d3rd3pf/(2π~)3 (for a cluster containing n electrons).

The Pauli principle shows up explicitly here in these block-
ing terms, imposing that f should be less than 1, which
implies that not more than 1 particle, or 2 with opposite
spins, can occupy a phase space cell of volume (2π~)3. As

known from the theory of Landau liquids, this blocking
factor plays a dramatic role for electronic systems [29].
At T = 0 K, all the collisions are Pauli blocked and the
mean-free path of the electrons becomes infinite. If, at the
opposite, the system is hot, or out of equilibrium, phase
space opens widely and the effect of two body collisions
(apart from asymptotic behavior) can hardly be inferred
from formal arguments. Studying the hot electron cascade
in which two body events redistribute the energy inside
the electron cloud thus requires a numerical approach.

Ingredients of the BUU approach in clusters

The use of BUU in the present context of the electron
response in metal clusters requires some discussion, as it
is not (yet) a standard tool of investigation, as for exam-
ple in nuclear [26] or plasma physics [30]. The key ques-
tion, beyond a formal justification of the collision integral,
which can be inferred from numerous works in nuclear and
plasma physics [30], lies in the input cross-section dσ/dω.
In the absence of a clear-cut derivation on how to share
the effect of the Coulomb interaction between a Hartree,
an exchange-correlation and a collision-like two-body con-
tribution, we have chosen to rely on experience gathered
in nuclear physics, and, above all, in plasma physics [30]
(ruled by the same elementary interaction as the clus-
ter’s valence electrons). We chose for dσ/dω an in-medium
(screened) cross-section and keep the LDA xc contribution
in the Vlasov part, thus following the local field correction
picture of plasma physics, which should ensure no double
counting, at least at the phenomenological level we aim at
[30]. The screened cross-section is evaluated by inserting
a test charge in the system and fitting the screened po-
tential it produces by a Yukawa potential ∝ exp(−r/d)/r,
which provides a screening length d = 3a0. The screen-
ing length is finally translated into a geometrical cross-
section dσ/dω = σ/4π (computed with the phase shifts
method), which will finally enter the BUU collision inte-
gral. More details, and a critical discussion on the evalu-
ation of dσ/dω will be presented elsewhere [31].

More on the double counting problem

The collision term is derived from a second-order corre-
lation diagram. One thus may suspect that some corre-
lations are possibly double counted when using a colli-
sion term in connection with energy-density functionals
for the mean-field motion. This question has been much
discussed in other fields of physics where similar meth-
ods are employed. There is, for example, liquid 3He as a
dense Fermion system where bubble diagrams play a de-
cisive role similar as for the electron gas. That case had
been discussed in [32], and it was worked out that there is
no double counting because the collision term (in Marko-
vian approximation) accesses the imaginary part of the
effective interaction whereas the mean field uses only the
real part. It was, furthermore, pointed out that the col-
lision term should involve the screened interaction as de-
rived from the interaction given in the mean field part. A
discussion of the problem for the case of nuclei is found
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in [33]. The findings are very similar. But here it was
worked out in detail that double counting is no problem
only if the collision term is treated in Markovian approx-
imation and that dynamical corrections are to be com-
puted when considering memory effects. In the present
treatment, we are using as exploratory tool a simple BUU
collision term in Markovian approximation. We thus can
assume that there is no double counting of correlations
in the procedure, although this point should be checked
specifically once for this particular system of electrons in
a cluster.

2.2 External field: laser excitation and ionic
background

The external potential vext(r, t) in which the electrons
move (see Eq. (2)) is made up of two parts:

vext(r, t) = vion(r) +E0 f(t) z sin(ω0 t). (10)

The first part, vion(r), accounts for the Coulomb potential
caused by the ionic background of the cluster. The excita-
tions of clusters by femtosecond laser pulses are so rapid
that, to a very good approximation, ions can be considered
as fixed in the course of the excitation process and during
an early stage of the electronic relaxation (typically up to
t <∼ 100 fs). In addition, previous investigations of the plas-
mon response in metal clusters have shown that the details
of the ionic structure seem to play only a minor role for
the electron dynamics and become less and less important
beyond the linear regime [16]. The ionic background of the
cluster (nuclei plus core electrons) can thus be safely de-
scribed in the jellium approximation, as long as one does
not consider long time scales at which ionic motion would
take place (see Sect. 3.3). Note that we employ the “soft”
version [34] of the jellium model, which is equivalent to a
folding of the sharp jellium with a pseudopotential char-
acterized by the Ashcroft core radius rc, and allows one
to reproduce the experimental plasmon resonance energy
in an LDA calculation [35].

Pseudopotentials are required if a detailed descrip-
tion of ionic structures is desired, such as for example
when ionic motion is explicitly treated (Sect. 3.3). But
here comes the problem that pseudopotentials are usually
designed to optimize static structural properties such as
the geometry of small systems, and are not particularly
good at reproducing dynamical electronic properties like
the plasmon peak position. Research on improving pseu-
dopotentials is presently going on [36]. As a preliminary
solution we have used a local pseudopotential having the
form of the local part of the pseudopotentials from [37]
and readjusted the parameters slightly to provide appro-
priate binding together with plasmon position [38]. We
simply take

VPs(r −R) =
∑
i=1,2

vi
erf ((r −R)/σi)

|r −R|
(11)

with

erf(r) =

∫ r

0

dr′ exp

(
r
′2

2σ2
i

)
(12)

where σ2 = 2σ1, σ1 = 0.8a0/(2
√

ln 2), v1 = 4.59σ2
1 and

v2 = −1.21σ2
2. This pseudopotential has been successfully

tested in connection with the optical response of small
sodium clusters, even in the low temperature regime in
which the plasmon response is highly fragmented [39]. The
accuracy of these calculations is comparable to the one
attained using methods of quantum chemistry for small
systems [40].

When explicit ionic motion is accounted for, we treat
the ions as classical particles described within the stan-
dard framework of molecular dynamics. The equations of
motion for momentum and position of the I-ion then read

d

dt
PI = −∇RI

[
Vext(RI , t)−

∫
drn(r, t)Vps(

∣∣RI − r
∣∣)

+e2
∑
J 6=I

1∣∣RI −RJ

]
, (13)

d

dt
RI = PI/Mion. (14)

They are solved with the standard and robust leap-frog
algorithm [41].

The second part of vext(r, t) (Eq. (10)) is the potential
of the laser field. The latter is taken to be polarized along
the z-axis and has been written in dipole approximation.
E0 is the peak field strength and ω0 the frequency of the
laser. The envelope of the pulse f(t) has been chosen either
Gaussian for simulating short pulses, or a succession of
a (sine or linear) ramp followed by a constant field to
simulate longer pulses and to possibly test the impact of
a (fainter) steady field.

2.3 Observables

We now define the relevant observables for the phenom-
ena we are interested in, namely electron emission and
dipole response. The evaluation of electron escape within
TDDFT relies on the basic relation

N(t) =

∫
V
d3r ρ(r, t), (15)

which associates the number of electrons N(t) remain-
ing in a bound state with the electronic density within
a finite volume V centered around the ionic background.
From N(t), one can calculate the total number of escaped
electrons as Nesc(t) = N(t = 0) − N(t) [17]. The dipole
moment d(t) with respect to the z-axis is evaluated inside
the same volume V [19]:

D(t) =

∫
V
d3r z ρ(r, t). (16)
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From the dipole signal D(t) one can compute the strength

function S(ω) ∝ Im(D̃(ω)) and the power spectrum

P (ω) = |D̃(ω)|2 from the dipole signal in the frequency do-

main D̃(ω). The former gives access to the optical response
as measured in the linear regime, and the latter charac-
terizes spectral patterns in the nonlinear domain [19].

An important link with experiment may furthermore
be established by calculating probabilities of finding the
clusters at a time t in one of the possible charge states k to
which they can ionize. In quantal TDKS explicit expres-
sions for the P k(t) can be obtained in terms of bound-state
occupation probabilities Nj(t) associated with the single-
particle KS densities ρj ,

Nj(t) =

∫
V
d3r |φj(r, t)|

2 =

∫
V
d3r ρj(r, t). (17)

Since the single-particle KS orbitals have no rigorous phys-
ical meaning, one must consider the P k[{ρj}](t) defined
below only as a reasonable approximation to the exact
probabilities. To derive the expressions for the P k’s, we
make use of combinatorial considerations which lead us to
the following identification (k = +p, . . . + n for a Nap+n
cluster):

1 =
+n∑
k=+p

P k(t) =
occ∏
j

[
Nj(t) + (1−Nj(t))

2
]2
. (18)

We then work out the right-hand side of equation (18) and
rearrange the resulting terms, collecting terms containing
(k− p) factors (1−Nj) and (n− k) factors Nj . These are
then identified with the ionization probabilities P k(t).

From the above ionization probabilities P k’s one may
recover the total number of escaped electrons by simple
summation:

Nesc(t) =
+n∑
k=+p

kP k(t), (19)

which thus also appears as the average ionization of the
system. In turn, the probability law associated with the
set of P k’s allows one to evaluate the standard deviation
∆Nesc around Nesc from the variance

∆N2
esc =

+n∑
k=+p

k2P k(t)−

 +n∑
k=+p

kP k(t)

2

. (20)

This provides a more complete, while still compact and
rich, account of electron emission properties.

As a final remark, we would like to stress that the
robustness of the above defined quantities has been ex-
tensively checked in our previous papers (dependence on
boundary conditions, role of the finite volume V). We shall
not here rediscuss these technical questions and we re-
fer the reader to the proper references on these questions
[19,42].

2.4 Numerical details

2.4.1 Quantal TDKS

The quantal TDKS equation has been solved either in
2D cylindrical or in full 3D geometry (without symme-
try restriction). The 2D calculations allow systematic ex-
ploratory calculations while the 3D computations provide
the most realistic approach. Absorbing boundary condi-
tions have been used throughout. The impact of such
boundary conditions has to be carefully checked. This was
extensively discussed in [19], and we refer the reader to
this reference for details.

In both 2D and 3D cases we use grid techniques for rep-
resenting the electronic wavefunctions. In 2D we use finite
difference formulae for the kinetic energy operator and
a Crank-Nicholson scheme for the propagator, for tech-
nical details see [19]. The 2D geometry allows the easy
treatment of possibly large clusters (up to 100 atoms and
more). In such cases, typical computational boxes con-
tain 50–70 (radial direction) × 200–300 (z-direction) grid
points, with mesh spacings of order 0.8 a0. The time step
is typically taken as ∆t = 0.01 fs.

In the 3D simulations the Laplacian in the kinetic
energy and in the Poisson equation is evaluated using
fast Fourier transformation. The long-range part of the
Coulomb field is handled separately to avoid problems
with periodic copies of the fields [43]. The time step em-
ploys an interlaced local and kinetic propagation with
complex exponentials, i.e.

ψα(t+ δt) = exp (−iδtT̂ ) exp (−iδtV̂ )ψα(t) (21)

where the new Kohn-Sham Hamiltonian is recomputed at
each full time step. The 3D simulations are best suited
for intermediate clusters (10–40 atoms). We typically use
48 × 48 × 48 grid points with a spacing of 0.8 a0, and a
time step ∆t = 0.0048 fs.

2.4.2 Vlasov and BUU equations

The numerical solution of the Vlasov equation (5) is
performed in 3D (without symmetry restriction) using
the test-particle method [44]. The one-body distribution
f(r, p, t) is thus projected onto a swarm of ν numerical
test particles as

f(r,p, t) '
n

ν

ν∑
i=1

gr(r− ri(t))gp(p− pi(t)), (22)

where gr and gp are normalized Gaussian functions with
width σr and σp. The Vlasov time propagation for f then
follows from classical equations of motion for the ν test
particles, derived from the Hamiltonian [45]

hν(ri,pi) =
p2
i

2m
+ v[ρ](r, t) ? gr(r− ri(t)) (23)

(the symbol “?” stands for the folding operation in co-
ordinate space). It has recently been pointed out [45,46]
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that the finite resolution of this numerical method intro-
duces spurious dissipation into the dynamics. This even-
tually causes the system to evolve towards a Boltzmann
equilibrium regardless of the fermionic nature of the sys-
tem under consideration. Nevertheless, on the short time
scales we restrict ourselves when using the Vlasov equa-
tion, fermionic stability can be guaranteed by a suitable
choice of the numerical parameters σr and ν. For the com-
putations presented in Section 3.4 a reasonable compro-
mise is σr = 1 a0 and ν/N = 1500.

The algorithm used to evaluate the BUU collision term
is inherited from the ones developed in nuclear physics
[47]. The test particle representation simplifies the horri-
ble integration over phase space by replacing it with a loop
over pairs of test particles 1 and 2. The collision rate is
governed by the cross-section σ. The cross-section is trans-
lated into a scattering distance dphysσ =

√
σ/π that needs

to be rescaled to scattering of test particles, which then
yields the effective distance deffσ = dphysσ

√
n/ν [47]. The

actual sampling then proceeds as follows. Starting from
two particles 1 and 2, one previews the distance of closest
approach dmin of these two particles which will emerge
within the coming time step t −→ t+ δt, and selects those
cases which stay within the effective scattering disk, i.e.
for which dmin ≤ deffσ . If both criteria are fulfilled, then
the two particles collide: (p1,p2) −→ (p′1,p

′
2) in accor-

dance with conservation of energy and total momentum.
The remaining freedom in the scattering angle is evaluated
stochastically. Finally, Pauli blocking is checked by con-
sidering target phase space cells for particles 1 and 2. The
decision for a successful event is again sampled stochasti-
cally, proportional to the amount of open phase space.

It should finally be noted that the BUU collision inte-
gral (once Pauli blocking is properly accounted for) leads
to a fair stabilization of fermion statistics, as compared
to Vlasov. This was expected from the experience in the
nuclear case [45]. However, the effect is here more pro-
nounced so that, at least on the time scales we are inter-
ested in, the question of loss of statistics can be assumed
to be solved in the BUU case.

3 Results

3.1 Basic electronic response

As a first illustrative example we analyze a typical elec-
tronic response to an intense fs laser pulse. We consider
a Na+

93 cluster, treated in fully quantal TDLDA for the
electrons and in the jellium approximation for the ionic
background. Calculations have been performed in 2D. The
cluster is excited by a trapezoidal laser pulse with 100 fs
duration, switched on and off within 10 fs by a linear ramp.
The intensity is I = 1011 W cm−2 and the photon fre-
quency ~ω ∼ 3.1 eV, about 10% above the Mie resonance
for this cluster. Systematic calculations of clusters irra-
diated with short Gaussian pulses have shown that the
cluster response depends crucially on the actual laser fre-
quency [20]. As long as the frequency stays sufficiently far

Fig. 1. Electronic response of a Na93
+ cluster, as a func-

tion of time (in fs), to a 100 fs laser pulse of peak intensity
1011 W/cm2; upper panel: dipole moment along the axis of
laser polarization (in a0); middle panel: number of emitted
electrons; lower panel: probabilities for some selected charge
states, as indicated.

away from the plasmon resonance, the dipole response fol-
lows closely the pulse profile and disappears if the laser is
switched off. By contrast, if the laser frequency is close
to the Mie resonance, one observes damping through elec-
tron emission and a true excitation of the plasmon reso-
nance which lasts even after the laser has been switched
off. We consider here an example above resonance, but
where the resonance comes into play during the process.
Results are displayed in Figure 1. For the first 50 fs, the
laser pulse is out of resonance and the electronic dipole
moment d(t) (upper panel) follows the profile of the laser
pulse. Then, however, the amplitude of d(t) starts to in-
crease although the laser intensity does not change. Look-
ing at the middle panel, we see that the number of emit-
ted electrons grows strongly around 50 fs. The remaining
cluster acquires a higher charge state, the electron cloud
is thus more compressed, and this shifts the plasmon res-
onance to higher frequencies, i.e. closer to the laser fre-
quency. This enhances the response of the system, as seen
from the growth of d(t) in the upper panel. The process
reaches a peak until the violent electron emission damp-
ens the signal substantially. After the pulse is switched off
at t = 100 fs and electron emission has come to an end,
we find that the remaining electrons continue to perform
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collective oscillations at the actual plasmon frequency of
the system, which is slightly above the initial one due to
the higher charge state of the final system.

The lower panel of Figure 1 displays the probabilities
(Sect. 2.3) of some selected charge states of Na93 as a func-
tion of time. With the change of Nesc, the charge state
with highest probability changes as well. For example, at
70 fs we have Nesc ∼ 3 and the probability for charge state
4 comes close to its peak, losing weight later on while Nesc
grows further. The asymptotically dominant charge states
lie around 10+. Ionization states higher than this are then
rapidly becoming less probable, as we see from the much
smaller value for charge state 13+. Note that the num-
ber of escaped electrons (middle panel) and the ionization
probabilities are formed at basically two time scales. The
first (steady) ionization phase leads to a charged cluster
resonating with the laser, which leads to a more sudden
phase of ionization. This behavior in the second phase is
comparable, although involving larger numbers, to the be-
havior identified in the case of Na+

9 [20].

3.2 Collisional versus laser excitation

Laser excitation is not the only way of producing highly
charged clusters. A currently much studied, alternative
ionization mechanism is provided by collisions with highly
charged and fast ions [10]. For velocities of order of the
electronic Fermi velocity, these ions deliver a very short
and intense electric pulse to the cluster, which again leads
to dipole excitation and electron emission. A major differ-
ence lies in the time scales, which are below a femtosecond
in the case of ion collisions, while fs-laser excitations still
typically involve at least some tens of fs. One has to keep
in mind that traditional low-intensity lasers take an even
longer (nanosecond) span such that slow electron evap-
oration is accompanied by heating of the electron cloud
during the charging process itself [11]. This problem dis-
appears at the fs time scale [12]. We will concentrate here
on a comparison between the two fast excitation mecha-
nisms, ion collisions versus fs lasers.

Test case is here Na+
9 with jellium approximation for

the ionic background. For the ionic excitation we take
up an earlier result for a collision with Ar8+ at velocity
equal to the electronic Fermi velocity and impact parame-
ter b = 22 a0, for details see [42]. For comparison, we have
tuned a fs laser excitation to yield about the same amount
of emitted electrons. Actually, we consider a pulse with to-
tal duration of 60 fs, switched on and off with a 20 fs sine
profile. The pulse has an intensity of I = 1011 W/cm

2
and

frequency ω = 2.65 eV, just a bit above the Mie resonance.
In Figure 2 we compare these two cases. The middle panel
shows that both excitations yield indeed the same asymp-
totic numbers of escaped electrons. We have also checked
the detailed distributions of ionization probabilities, com-
puted according to equation (18). They are generally very
similar, leading to comparable (and large) values for the
variance equation (20), namely 1.2 particles in the laser
case versus 1.1 for the ionic excitation. The major differ-
ence between the two excitations lies in the time needed

Fig. 2. Comparison between an excitation process of a Na9
+

cluster by an energetic ion and a laser pulse leading to the
same number of emitted electrons (see text for details). The
number of emitted electrons Nesc (full line) is plotted as a
function of time (in fs). In the upper panel are displayed the
single particle KS densities ρj equation (17) as a function of
time (ion collision).

to reach the asymptotic number of emitted electrons. The
ionic excitation is extremely fast. The whole excitation
energy is transferred in a narrow (sub fs) time-interval
around the time of closest approach. This, so to say, sets
a rather well-defined clock from which on one can trace
clearly the various time scales in the clusters response.
We can deduce from the middle panel of Figure 2 that
the direct electron emission is a fast process taking only
about 2 fs until the asymptotic value is formed. This time
is much faster than for the case of laser excitation, where
Nesc steadily grows over a period of about 30 fs, compara-
ble to the whole duration of the pulse. All in all, however,
both times are short compared to the typical ionic time
scale (of order 100 fs to 1 ps), which makes both ion col-
lisions and laser excitations suitable trigger mechanisms
leading to “clean” fission dynamics.

As the time scales are so different, one may suspect
that differences show up in the amount of deposited in-
ternal energy. The excitation energy considered here is of
thermal nature. We measure this effect by evaluating the
difference Eth(t) between total collective kinetic energy
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and the flow-kinetic energy of the individual particles:

Eth(t) =
∑
k

∫
V

|jk(r, t)|2

2ρk(r, t)
dr −

∫
V

|j(r, t)|2

2ρ(r, t)
dr, (24)

where j and ρ are total local current and density and jk
and ρk are the corresponding quantities for the k-th Kohn-
Sham orbital. The lower panel of Figure 2 shows this ther-
mal energy for currents along the z-axis. There are, of
course, differences in the transient regime, due to the dif-
ferent temporal profiles of the excitations. But the asymp-
totic values agree nicely. Both excitation mechanism, al-
though they seem quite different, deliver at the end the
same number of emitted electrons together with the same
amount of internal thermalization in these TDLDA simu-
lations.

It is interesting to analyze the mechanism for this ther-
malization in more detail. The kinetic energy is totally col-
lective if all the particle velocities jk(r, t)/ρk(r, t) are in
phase, and the thermal energy (24) would then disappear.
Comparing Nesc with Eth for the collisional case in Fig-
ure 2, we realize that these two processes proceed at the
same speed, which suggests that they are closely related.
In fact, the reason for the substantial non-collectivity we
observe for the electronic motion is that electron emis-
sion proceeds at different rates for the different single-
particle states, because they are not all bound with the
same strength. Consequently, the individual particle ve-
locities get out of phase, and this shows up immediately
as thermalization. This is illustrated in the upper panel of
Figure 2, which shows the fraction of electrons left bound
in the three different single-particle states for the case of
ion collision. Obviously, the three states deplete very dif-
ferently, and this confirms that the thermalization defined
here equation (24) is directly related to electron emission,
so to speak its counterpart in the electron cloud left be-
hind. This effect is to be distinguished from Landau damp-
ing, which becomes effective only for larger clusters above
N ∼ 60 [48].

3.3 Coupling electronic to ionic motion

On the time scale of the excitations discussed above, which
all stay safely below 100 fs, the ionic background of the
cluster can be treated as frozen. But this ceases to apply
for time intervals above 100 fs. One soon has to take into
account the ionic motion. An example will be given in this
subsection.

In addition to the electron dynamics, we now also
propagate the classical trajectories for ionic motion equa-
tions (13, 14) under influence of the ionic and elec-
tronic Coulomb forces, following an approximation as pre-
sented in [14]. This approach where ions and electrons are
treated on equal footing goes clearly beyond the Born-
Oppenheimer approach, which assumes that the electrons
follow the ions adiabatically. Diabatic effects are now in-
cluded in the present treatment.

We consider a Na12 cluster irradiated by a Gaussian
laser pulse of intensity I = 5 × 1012 Wcm−2, with full
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Fig. 3. Energy transfer between electrons and ions as a func-
tion of time (in fs). The Na12 cluster has been excited by a
Gaussian laser pulse of peak intensity I = 5 × 1012 W/cm2.
The electronic energy is defined in equation (24) and the ionic
energy is simply the kinetic energy of ions. Energies are in
atomic units.

width at half-maximum of 25 fs, so that at t = 100 fs, the
excitation is almost over. The laser is linearly polarized
along the main diagonal of the principal axis of the clus-
ter, and the photon energy is 6.58 eV, almost twice the
plasmon frequency. The plasmon resonance is thus not
excited and at the end of the excitation the total elec-
tronic dipole moment goes back to its initial value of zero.
We have chosen such a high frequency for the laser pulse
to have a well-defined (non-collective) excitation of the
electronic cloud, with a coupling to the continuum and
a direct emission of electrons, although such laser pulses
are unlikely to be available in a present-day experimental
setup.

Approximately 3 electrons are expelled from the clus-
ter at the end of the laser excitation. At t = 100 fs we
thus have a Na3+

12 cluster, with an excited electronic cloud
which is strongly deformed because of the laser polariza-
tion. The ions will thus begin to move since their equi-
librium geometry has changed. A reequilibration is here
impossible, and the evolution of the ionic dynamics with
simultaneous electronic dynamics begins by the emission
of two ions followed by roughly two electrons. The remain-
ing cluster is thus approximately a Na++

10 cluster (mind
that TDLDA does not quantify electron numbers), which
is still charge-unstable; several fragments are then ex-
pelled, which is not enough to stabilize the cluster. Even-
tually, the cluster is completely destroyed in about 2 ps.

As a first step of the analysis, it is interesting to study
the energy transfer between the (initially) excited elec-
tron cloud and the ions. The question of final stage frag-
mentation requires more systematic studies and will be
addressed elsewhere [49]. The excitation energies of both
electrons and ions are displayed in Figure 3. The elec-
tronic component is defined as in equation (24). For the
ionic energy we simply take the total ionic kinetic energy,
as the ions were initially at rest. The electronic energy,
initially high because of the heating by the femtosecond
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laser pulse, decreases steadily by energy transfer to the
ionic degrees of freedom.

Within the first 100 fs, the ions are found to be almost
static, which justifies a posteriori the choice of a frozen
ionic configuration in all the electronic dynamics compu-
tations which we performed before, even in the strongly
nonlinear regimes. But after that, the ions start to take
their share in the dynamical process at a surprisingly fast
time scale, namely within the next 100 fs. The fast cou-
pling between electrons and ions quickly cools the electron
cloud, although it was initially very hot. At last, it should
be noted that the above described energy transfer is a
typical non adiabatic effect which cannot be addressed
in conventional Born-Oppenheimer Molecular Dynamics
such as Car-Parinello simulations [50], or the calculations
of Barnett et al. [51]. To our knowledge, the above dis-
cussed results constitute the first detailed simulation of
the explosion of a metallic cluster induced by a femtosec-
ond laser pulse.

3.4 From TDLDA to BUU

As obvious from the results discussed above, irradiation
of metal clusters by intense lasers may lead to highly dis-
sipative phenomena, which might call for a description of
electrons beyond the mere mean-field. The BUU equation
presented in Section 2.1.3 constitutes a first attempt to
go beyond mean-field. It is thus interesting to compare a
Vlasov and a BUU description of the excitation of a metal
cluster by an intense laser.

Figure 4 represents the dipole signal, as calculated
in Vlasov and BUU, obtained when applying a Gaussian
laser pulse with peak intensity 1012 W/cm2 to Na+

9 . The
laser frequency matches the plasmon resonance and the
width is 20 fs. The peak intensity occurs at t = 30 fs. The
amplitude of the BUU case is of course lower than the am-
plitude of the Vlasov case, because of the larger dissipa-
tion in BUU. The difference is well visible in the relaxation
stage: once the laser is off, the dipole signal quickly relaxes
if two body collisions are implemented. But we can also see
large differences in the excitation stage, i.e. while the am-
plitudes grows. Less energy is transfered by the laser into
the plasmon, the difference getting converted into thermal
energy of the electrons. Two body collisions indeed play
their role to redistribute energy into local, non collective
motion.

It is instructive to perform a more detailed analysis
of the plasmon damping in Figure 4 in order to access
time scales. As a first estimate, as read from Figure 4,
we compare plasmon signals from t ∼ 35 fs on. A Fourier
analysis of both signals easily allows us to obtain a plas-
mon linewidth Γ , from the FHWM. We respectively find
ΓBUU ∼ 0.2 eV and ΓV la. ' 0.06 eV, which respectively
leads to lifetimes of order τBUU ∼ 3 fs and τV la. ∼ 10 fs.
The latter lifetime τV la. provides a measure of Landau
damping. The BUU can be interpreted in the light of re-
sults from Landau Fermi liquid theory [29]: for a quasi-
particle with energy ε in a Fermi sea with temperature T ,
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9 cluster by a Gaussian laser pulse of peak intensity I =
1012 W/cm2, as calculated in Vlasov (upper panel) and in BUU
(lower panel). The dipole moment (in a0) along laser polariza-
tion is plotted as a function of time (in fs). The envelop of the
laser profile is also plotted (dashed lines).

we expect a collision time

1

τee
= K

π2T 2 + (ε− εF )2

1 + exp(−(ε− εF )/T )
· (25)

The prefactor K has been recently measured in bulk Ag
[52,53], with values in reasonable agreement with the RPA
prediction K−1 = an5/6 [29], where a = 16π1/635/6~4/

(e2m3)1/2. Applying this formula to sodium, we obtain at
Fermi level (ε = εF ) 1/τee = 0.6T 2. The temperature en-
tering the above evaluations can be accessed in our case
by fitting the single-particle electronic occupation num-
bers to a Fermi distribution, which provides a measure of
the system temperature [54]. Such a procedure leads to
an electronic temperature of order 1.2–1.3 eV for times
beyond 50 fs. Inserting this value in the above formula we
obtain τee ∼ 1–1.2 fs, which, at the rough qualitative level
at which we presently stay, is compatible with our above
estimate.

The above estimate of cluster temperature also pro-
vides interesting information on the further behavior of
electrons. As the heating process in BUU is more efficient
than in Vlasov, the cluster keeps emitting electrons after
the laser has been switched off because it is now very hot:
the temperature of 1.2–1.3 eV corresponds to almost half
the initial Fermi level at final time. The electron evapo-
ration rate, around 0.007 electron per femtosecond, has a
magnitude consistent with the prediction of the Weisskopf
formula [55]. This confirms the thermal interpretation for
this retarded electron emission.
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It remains to see whether this modified energy balance
will show up in the coupling to ionic motion as discussed
in Section 3.3, or whether it would interfere with exci-
tation processes involving a “comparable” time scale as,
e.g., laser pulses of 20–50 fs duration.

3.5 Second harmonic generation

Laser excitation carries a given frequency and the linear
response explores the spectral properties of a system at
this frequency. The dipole response to a harmonic laser
field is then D(t) = α1E0 exp (−iωt) where E0 is the laser
field strength, ω the frequency, and α1(ω) the coefficient of
linear polarizability. Nonlinear effects can couple to side-
bands of multiple frequencies such that one deals with the
generalized response

D(t) = α1E0e
−iωt + α2E

2
0e
−i2ωt + α3E

3
0e
−i3ωt + ... (26)

The coupling decreases with increasing multiplicity and
the first sideband to look at lies at double frequency,
known as second harmonic generation (SHG). SHG with
particularly suited crystals is a standard tool for frequency
doubling of laser beams. But SHG is also often used as a
means to analyze the nonlinear response of a system. In
this spirit, it has also been applied to large metal clusters
attached to a surface, see e.g. [56]. Amongst the many as-
pects of SHG, one of the first questions is under which
conditions one may obtain the largest response. Analyti-
cal estimates within an oscillator model plus small anhar-
monic perturbation suggest that the resonance frequency,
the Mie plasmon frequency ωpl, should be involved at some
end of the process, either by shining at the cluster with
ω = ωpl (SHG “out of the resonance”), or by placing the
second harmonics at 2ω = ωpl (SHG “into resonance”).

We have investigated both options for the test case Na+
9

in the ionic 144 configuration from the cylindrically aver-
aged pseudopotential scheme (CAPS) [57]. The 144 means
that the ions are arranged as one single ion followed by a
ring of four ions and continued by a second ring of four
ions where the two rings are rotated by 45◦ relative to
each other to minimize the Coulomb energy. This ionic
structure involves a slight asymmetry with an octupole
moment of β3 = −0.2. This turns out to be just suffi-
cient for our purposes, since SHG only occurs if inversion
symmetry is broken.

We apply a laser pulse of 60 fs duration, switched by
a ramp of 6 fs at the beginning and the end. The induced
dipole moment D(t) is recorded and Fourier transformed

to D̃(ω) at the end of the process. The power spectrum

P(ω) = |D̃(ω)|2 thus obtained is shown in Figure 5. The
lowest panel represents the case of SHG “into resonance”,
where the cluster is excited at approximately half the reso-
nance frequency. One sees a nice and clean SHG signal far
above background. The shape of the SHG peak is some-
what twisted due to a slight (and deliberate) mismatch of
the frequencies. The 2ω and the ωpl components both fight
for their share, and what we see here is the compromise
thus found. The middle panel stands for the case of SHG

Fig. 5. Dipole power spectra for Na9
+ from excitation with a

laser pulse over 60 fs. The two lower panels are computed with
detailed ionic background in the CAPS 144 configuration [57]
and a jellium background with the same octupole deformation
β3 = −0.2 was used in the upper panel. Two laser frequencies ω
are employed as indicated (ωres is the Mie plasmon frequency
for the given model).

“out of the resonance”. There is again a nicely visible SHG
signal and again a perturbation of the peak, here proba-
bly due to interference with the volume plasmon which
resides near this frequency. However, the background is
larger than in the previous case. This is due to the fact
that the system in resonance reacts more strongly and the
emerging larger amplitude causes a much more dramatic
perturbation of the system. Comparison shows that SHG
works efficiently both ways as expected from the analyti-
cal estimate. But the case of SHG “into resonance” seems
to be a bit more preferable because there is less perturba-
tion of the cluster (which, in turn, allows one to use higher
intensities).

The test case has symmetry breaking and includes
ionic structure. It is interesting to check the impact of ionic
structure on the emerging SHG. To this end, we have re-
computed the SHG “into resonance” using a jellium back-
ground with exactly the same deformation parameters as
the 144 CAPS configuration. The result is shown in the
upper panel of Figure 5. It looks quite similar to the re-
sult in the lowest panel (mind that the CAPS Mie plasmon
is slightly blue shifted as compared to the jellium value,
which is a well-known short coming of CAPS [38]). This
demonstrates that the symmetry-breaking, parametrized
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here in terms of the octupole moment β3, is the crucial
ingredient for the SHG. In addition, it is to be remarked
that free clusters have usually rather small β3. The ex-
periments on SHG have actually been done for clusters
attached to a surface [56], which induces a much larger
symmetry breaking. We have checked that aspect by con-
sidering also a value of β3 = 0.4 as found by recent calcu-
lations of Na8 on a surface of NaCl [58,59]. This enhances
the SHG by three orders of magnitude, such that the SHG
peak (in the case “into resonance”) is even higher than the
peak at the laser frequency. Thus far we can qualitatively
reproduce the experimental findings. But a detailed com-
parison is hindered by the fact the the measurements of
reference [56] are done for huge clusters (N ∼ 106) to get
stronger signals. Nonetheless, the above exploratory ex-
ample demonstrates that TDLDA is the appropriate tool
also for the study of the SHG. This motivates a more sys-
tematic survey of of SHG, which is planned for the near
future.

4 Conclusions and perspectives

We have presented simulations of the electronic and ionic
response in a metal cluster irradiated by an intense laser
beam. Since we consider strong perturbations, we have
used methods based on a full time-dependent description
of electronic degrees of freedom, by means of the TDDFT
at various levels of approximations. The coupling to ionic
degrees of freedom has also been accounted for, in a non
adiabatic way. The models developed allow one to access
a wealth of new interesting phenomena occurring in metal
clusters irradiated by intense laser beams with typical in-
tensities below 1015 W/cm2.

We have found that the electronic response, which
sensitively depends on the choice of the laser frequency
relative to the frequency of the Mie plasmon, is charac-
terized by a collective oscillation and (possibly strong)
emission. A comparison to charging by means of colli-
sions with energetic ions has shown that comparable ion-
ization states may easily be attained with moderately in-
tense lasers. The study of the coupling of electronic to
ionic degrees of freedom has furthermore revealed that
this coupling takes place on a very short time scales,
thus raising doubts on the possible relevance of adiabatic,
Born-Oppenheimer-based approaches in connection with
energetic laser excitation. Furthermore, extension of our
methods to incorporate dynamical two body collisions by
means of a collision integral of Boltzmann type has shown
that such a mechanism does significantly change the en-
ergy transfers in the course of the excitation of the clus-
ter, which might, in turn, influence the ensuing evolution
of the system, for example towards fission or fragmenta-
tion. Finally, we have investigated second-harmonic gen-
eration from fs laser pulses. This requires some reflection-
symmetry breaking in the cluster ground state to operate
at all. Optimum efficiciency is achieved if the second har-
monics coincides with the plasmon resonance.
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11. U. Näher, H. Göhlich, T. Lange, T.P. Martin, Phys. Rev.
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26, 4199 (1982).
38. F. Calvayrac, P.-G. Reinhard, E. Suraud, J. Phys. B: At.

Mol. Opt. Phys., 31, 1367 (1998).
39. T. Reiners, C. Ellert, M. Schmidt, H. Haberland, Phys.

Rev. Lett. 74, 1558 (1995).
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